
Maximal Simplicial Set

In this code, we implement the simplicial set ∆ [d]•, by the name MaximalSet().
The Poset∆() function creates objects of the category [d] via list comprehension. An easier way to achieve

the same is by using a command nx.path_graph(self.d, create_using=nx.DiGraph()). This command
creates a directed graph with d vertices and d− 1 directed edges, pointing in increasing order. Of course we
don’t have identity maps. To include them, we could create a list of lists of the form X = [[i, i] , [i, i + 1]]

and pass this into Poset∆ = nx.DiGraph() Poset∆.add_edges_from(X).
Building on this is the Simplex∆() method, taking in argument n. This function creates a list of lists

containing n objects taken from {0, 1, ..., d}, in ascending order. The method will incorporate degenerate
elements, of the form [0, 0, 1] for d = 1 and n = 2. This explains the need of converting the existing list
Poset∆ containing numbers [0, 1, ..., d] to [[0] , [1] , ..., [d]] in line. As an added advantage, we can simply use
the function list + list to combine two lists, where one is treated as an element of a list itself.

One way we can weed out degenerate elements from this generated list is by simply comparing the size
of the list with its corresponding set. If these sizes differ, the list is degenerate:

1 def DegenerateOrNot(self ,entryofalist):
2 if len(entryofalist) == len(set(entryofalist)):
3 return False
4 else:
5 return True

But we don’t need this function right now. Instead, we take advantage of indexing structure of Simplex∆().
We simply need to compare two lists within Simplex∆(n) and Simplex∆(n+1). For list A in Simplex∆(n)

and list B in Simplex∆(n+1), considered as sets, if A ⊂ B, then we know that we have a degeneracy map
s : A −→ B. If B ⊂ A, then we have a face map d : B −→ A. These account for di : Xn+1 −→ Xn and
sj : Xn −→ Xn+1. As for the index i and j, they are chosen by looking at the first object different in the
list A and B. The former is in the for loop in line 41.

These maps are stored as edges in a graph. 1 Here, we’re adding lists as nodes in a multigraph Xgraph

using the networkx library. The domain and range for the face and degeneracy map comes from nodes in
the (multi)graph. Python uses a key-value dictionary to save attribute of an edge.

One problem with this code is that the nodes are not exactly the lists we generated. These lists are
converted to simple strings and these are added as vertices in the multigraph. Ditto for the values of the
keys (i.e., the name of the edges). I suppose this won’t be much trouble, as the values are separately passed
from functions, and the functions can always be appealed to, should the need arise.

The complete code is below, and uploaded on github.

1 import networkx as nx
2

3 class MaximalSet ():
4 def __init__(self ,d):
5 self.d = d
6

7 def Poset∆(self):
8 return [index for index in range(0, self.d+1)]
9

1By the way, what’s interesting about Python is that we can have a graph with graphs as nodes, graphs with files as nodes,
and even graphs with dictionaries as nodes.

1



10 def Simplex∆(self ,n):
11 if n == 0:
12 return(self.Poset∆())
13 Xbulletn = [[v] for v in self.Poset∆()]
14 for i in range(n):
15 Xbulletn = [r + [v] for r in Xbulletn for v in self.Poset∆() if r[-1] <= v]
16 return Xbulletn
17

18 def DegenerateOrNot(self ,entryofalist):
19 if len(entryofalist) == len(set(entryofalist)):
20 return False
21 else:
22 return True
23

24 def DegeneracyName(self ,d,j):
25 return "s_{} {}".format(d,j)
26

27 def FaceName(self ,d,j):
28 return "d_{} {}".format(d,j)
29

30 def MapValue(self):
31 Xgraph = nx.MultiDiGraph ()
32 for index in range(0,self.d+1):
33 for listitem in MaximalSet(self.d).Simplex∆(index):
34 firstlist = MaximalSet(self.d).Simplex∆(index)
35 secondlist = MaximalSet(self.d).Simplex∆(index +1)
36 if set(firstlist).issubset(set(secondlist)):
37 for index , (first , second) in enumerate(zip(firstlist , secondlist)):
38 if first != second:
39 Xgraph.add_edge(str(firstlist), str(secondlist), degeneracy=

MaximalSet(self.d).DegeneracyName(self.d,first))
40 if set(secondlist).issubset(set(firstlist)):
41 for index , (first , second) in enumerate(zip(firstlist , secondlist)):
42 if first != second:
43 Xgraph.add_edge(str(secondlist), str(firstlist), face=MaximalSet

(self.d).DegeneracyName(self.d,second))
44 return Xgraph

The following modification to line 15 will yield a simplicial set in which ∆ [d]k will consist of a list
containing k entries, but in which a preceding entry divides its immediate successor

1 Xbulletn = [r + [v] for r in Xbulletn for v in self.Poset∆() if r[-1] <= v and v | r[-1]]

2


